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Abstract 

An expression is obtained for the largest likely R factor 
for data that are normally distributed. For zero-mean data, 
the largest likely R factor is 21/2 and, for positive data 
(# >> o.), it is equal to 2o./(M.~1/2). These results are applied 
to fiber diffraction and other possible applications in crys- 
tallography are discussed. 

R factors are used in a variety of areas in crystallography 
as a measure of the similarity between two sets of parameters 
or data. Some applications are in assessing accuracies of 
structures, errors in scaling, effectiveness of derivatization 
and lack of phase closure in isomorphous replacement. 
Evaluating the significance of a particular-valued R factor 
is aided by comparison with the largest likely R factor; that 
which would be obtained if the two sets of parameters or 
data were unrelated or uncorrelated. The largest likely R 
factor depends on the statistical distribution of the data. 
Largest likely R factors have been derived for structures 
determined by crystallography (Wilson, 1950) and by fiber 
diffraction (Stubbs, 1989; Millane 1989a, b, 1990a, 1992). 
Largest likely R factors are derived here for data that are 
normally distributed. Applications to fiber diffraction are 
described and other possible applications are discussed. 

Consider two sets of data x and y (not necessarily posi- 
tive) that are compared by calculating the R factor 

R=~lx,-y,I/~lx, l=(~)/(Ixl), (1) 

where 6 = Ix - Yl and ( ) denotes the average. From Wilson 
(1950), the probability density for 6, Q(6), is given by 

oo 

Q ( 6 ) =  I P ( x ) P ( x + 6 ) d x  (2) 
- o o  

and G(x)  is defined by 

G(x)  = i x 'P(x ' )  dx'. (3) 
- o o  

Using these equations shows that 

(6) = 2[(x) - 2(G(x))] (4) 
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so that the largest likely R factor is given by 

g = [2(x) - 4(G(x))]/(Ix]). (5) 

Equation (5) is a general result for any distribution of x, 
and reduces to equation (6) of Wilson (1950) if x -> 0. 

If the random variables x and y are identically normally 
distributed with mean/~ and variance o.~, ,.e. 

P(x)  = (2~r)-*/2o. -* exp [ - (x- /~)2/2o.2] ,  (6) 

then i x ) = ~  and (ix[) is given by 

(Ixl) = ~ x[ P(x )+  P ( - x ) ]  dx (7) 
0 

so that 

(Ix]) = (2/Tr)I//o. exp ( -~2 /2o -2 )+~  erf(/~/2'/2o.), (8) 

where ef t ( . )  denotes the error function. Note that, for 
~/o .  --, oo, (Ixl) -+/z (as it must, since when p. >> o. most values 
of x will be positive) and that, for/~ = 0, (]x])= (2/~-)~/2o ". 
Substituting (6) into (3) shows that 

G(x)  = -(27r)-1/2o. exp [ - ( x  -/~)2/2o.2] 

+(l~ /2 ){ l+er f [ (x - l x ) /2 ' /2o . ] }  (9) 

and evaluating the mean gives 

(G(x)) = g / 2 -  o./(27rI/%. (lO) 

Substituting (10) into (5) gives 

R = 2o'/(It  '/2(Ixl)), (11) 

where (Ixl) is given by (8), which is the desired result. Note 
that, for zero-mean data, the largest likely R factor is 

R =2  I/2, for/~ =0. (12) 

It is instructive to examine the dependence of (ix I) on ~, 
shown as the solid line in Fig. 1. The approximation 

(Ixl)--- ~ (13) 

is the first term in the asymptotic expansion for (ixl) as 
~ / o . - ~ ,  and is quite accurate for p,/o.~> 1.5 (broken line 
in Fig. 1). For small ~, the power-series expansions for the 
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error function (Abramowitz  & Stegun, 1972) and the 
exponent ial  function can be used in (8), giving 

<1x1>=(21~)'/~<~(1+~120"~), ~10"->o. (14) 

This approximat ion is shown as the dot ted line in Fig. 1 
and is seen to be quite accurate for p,/0" <~ 1.5. Substituting 
(13) into (11) gives 

R = 20./(/xTrl/Z), for/.L/0"-~ oo, (15) 

which is quite accurate for tz >-- 1.5o". For positive data that 
are (approximately)  normally distributed, p. >> 0., so that 
the simple expression (15) is very accurate. 

Applicat ions of  these results to fiber diffraction are now 
described. The cylindrical averaging of  fiber diffraction 
patterns means that, as a result of  the central limit theorem, 
the ampli tudes are approximately  normally distributed, the 
approximat ion improving with an increasing number,  m, 
of  contributing Fourier-Bessel  structure factors (Millane, 
1990b). This description applies to a noncrystal l ine fiber, 
but the same is true for a polycrystalline fiber where the 
cylindrical averaging results in the superposit ion of  different 
reflections. The mean and variance of  the ampli tude distri- 
bution at a point on a fiber diffraction pattern where m 
terms contribute are given by (Millane, 1990b) 

tz,,, = e ' / 2 r ( m / 2  + 1/2)/ r ( m / 2 )  (16) 

and 

2 e m / 2 -  2 0.,,, -- ~,,,, (17) 

where F ( . )  is the gamma function and e is defined in 
Millane (1990b). Asymptotic  approximat ions  for large m 
(which are quite accurate) are given by (Millane, 1990b) 

i~,,,=(em/2) 112, m ~  (18) 

and 

2 e l4 ,  m -~ co. (19) 0 .  rn ~----~--- 
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Fig. 1. (]x])/o- as a function of ~/tr. The different curves are the 
exact values using (8) ( - ) and approximations using (13) 
( - - - )  and (14) ( . . . ) .  

Table 1. Exact ( Rm) and approximate ( R',, and R~,) largest 
likely R factors in fiber diffraction for m overlapping (real 

and imaginary) Fourier- Bessel terms 

m R m R" R~, 
1 0.828 0.798 0.853 
2 0.586 0.564 0.590 
3 0.475 0.461 0.476 
4 0.409 0.399 0.410 
5 0.364 0.357 0.365 
6 0.332 0.326 0.332 
7 0.306 0.302 0.307 
8 0.286 0.282 0.286 
9 0.269 0.266 0.269 

10 0.255 0.252 0.255 

R,, is calculated using equation (12) of Millane (1989a) and 
R" and R,~ using (20) and (21), respectively, of this paper. 

Substituting (18) and (19) into (15) gives the approximat ion 

R,, -~ (2 / r r ) l /2m- ' /2 ,  m ~ ~ (20) 

for the largest likely R factor. This agrees with the result 
derived by Millane (1990a), using a rather tedious 
asymptotic analysis of  the incomplete  beta function, and it 
was shown to be quite accurate. Equat ion (20) can be used 
to calculate quite accurate largest likely R factors for a 
whole  fiber diffraction pattern, both numerical ly (Millane,  
1990a) and analytically (Millane,  1992). A more accurate 
approximat ion can be obta ined by simply substituting (16) 
and (17) into (15), giving 

{ 2m[F(m/2)]  2 4 }  '/2 
Rm= 7r[l .(m/2+ l/2)]2 (21) 

This is considerably simpler  than the exact expression 
[equat ion (12) of  Millane (1989a)],  but is exceptionally 
accurate as can be seen from Table 1, where it is compared  
with the exact values and with the approximat ion (20). 

In conclusion,  (11) gives the largest likely R factor for 
compar ison of two sets of  normally distributed parameters 
or data. It varies between 2 '/2 for zero-mean data and 
2o'/(tzTr ~/2) for/.t >~ 1.50". These results can be used to obtain 
approximate  largest likely R factors in fiber diffraction very 
easily. The results could also be applied in powder  diffrac- 
tion (where the ampli tudes are also approximately  normally 
distributed) and other applicat ions may exist. 
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